Speech Recognition Using Hmm with Mfcc- an Analysis Using Frequency Specral Decomposion Technique
نویسندگان
چکیده
This paper presents an approach to the recognition of speech signal using frequency spectral information with Mel frequency for the improvement of speech feature representation in a HMM based recognition approach. A frequency spectral information is incorporated to the conventional Mel spectrum base speech recognition approach. The Mel frequency approach exploits the frequency observation for speech signal in a given resolution which results in resolution feature overlapping resulting in recognition limit. Resolution decomposition with separating frequency is mapping approach for a HMM based speech recognition system. The Simulation results show an improvement in the quality metrics of speech recognition with respect to computational time, learning accuracy for a speech recognition system.
منابع مشابه
An Enhanced Speech Recognition System
This paper describes the development of an efficient speech recognition system using various techniques such as Mel Frequency Cepstrum Coefficients (MFCC), Vector Quantization (VQ), Hidden Markov Model (HMM) and Autocorrelation. In this paper, a method to recognize the speech faster with more accuracy, speaker recognition is followed by speech recognition. MFCC/Autocorrelation is used to extrac...
متن کاملHMM based Automatic Speech Recognition Analysis
This project's 'HMM Based Automatic Speech Recognition Analysis main motive is just to generate an Automatic speech recognition which is clear an accurate using Hidden Markov Model (HMM) to get accurate results at number of frequency ranges related to human voice. Here is a record of 12 different words which is recorded by using a number of different speakers that includes male and female both ...
متن کاملIsolated Malay Digit Recognition Using Pattern Recognition Fusion of Dynamic Time Warping and Hidden Markov Models
This paper is presents a pattern recognition fusion method for isolated Malay digit recognition using Dynamic Time Warping (DTW) and Hidden Markov Model (HMM). The aim of the project is to increase the accuracy percentage of Malay speech recognition. This study proposes an algorithm for pattern recognition fusion of the recognition models. The endpoint detection, framing, normalization, Mel Fre...
متن کاملOptimization of Features Parameters for HMM Phoneme Recognition of TIMIT Corpus
Phoneme is the smallest contrastive unit in the sound system of a language. Moreover, it has a meaningful role in speech recognition. In this study, we are interesting for phonemes recognition of Timit database using HTK toolkit for HMM. The main goal is to determine the optimal parameters for the recognizer. For this reason, different speech analysis techniques were operated such as Mel Freque...
متن کاملSpeaker Dependent Speaker Recognition Using Svm and Hmm
Speaker recognition is the process of recognizing the speaker based on characteristics such as pitch, tone in the speech wave.Background noise influences the overall efficiency of speaker recognition system and is still considered as one of the most challenging issue in Speaker Recognition System (SRS). Support Vector Machine (SVM) and Hidden Markov Model (HMM) are widely used techniques for sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010